Extremal Functions of Forbidden Matrices PRIMES Conference

Meghal Gupta
Mentor: Jesse Geneson

May 16, 2015

$0,1 \ldots k$-matrix

Definition

$0,1 \ldots k$-matrix: A matrix where all the entries are in $\{0,1 \ldots k\}$.

Example

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

is a 0,1 -matrix. It is also a $0,1 \ldots k$-matrix for all $k>1$

Containment and Avoidance for 0,1-Matrices

$$
\begin{array}{cc}
\mathrm{A} & \mathrm{~B} \\
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
\end{array}
$$

Definition

A contains B : We can delete rows and columns in A, and replace 1's with 0's to end up with B.

Containment and Avoidance for 0,1-Matrices

$$
\begin{gathered}
\text { A } \\
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right) \\
\rightarrow
\end{gathered} \underset{\text { Delete }}{\rightarrow\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)} \rightarrow \underset{\text { Replace }}{\rightarrow\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)}
$$

Therefore, A contains B.

Containment and Avoidance for 0,1-Matrices

$$
\begin{gathered}
\text { A } \\
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right) \\
\rightarrow\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
\rightarrow
\end{gathered} \rightarrow \underset{\text { Delete }}{\rightarrow\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)}
$$

Therefore, A contains B.

Definition

A avoids B : A does not contain B.

Extremal Function 0, 1-matrices

Definition

ex (P, n) : If P is a 0,1 -matrix, then this is the maximum number of 1 's we can have in an $n \times n$ matrix that avoids P.

Example

$$
P=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

ex $(P, 3)=6$, because any 3×3 matrix with over 6 ones contains P.

Simple Result

Theorem

$$
\text { Let } P=\left(\begin{array}{ccccc}
1 & 1 & 1 & . & . \\
0 & 0 & 0 & & \\
0 & 0 & 0 & & \\
. & & & . & \\
. & & & & .
\end{array}\right)
$$

where P has r rows and c columns.
Then, ex $(P, n)=n(r+c)-(r-1)(c-1)$ Important: this is $O(n)$

Containment and Avoidance for $0,1 \ldots k$-Matrices

$$
\begin{array}{cc}
\mathrm{A} & \mathrm{~B} \\
\left(\begin{array}{lll}
2 & 0 & 1 \\
3 & 1 & 1 \\
0 & 0 & 2
\end{array}\right) & \left(\begin{array}{cc}
2 & 1 \\
0 & 2
\end{array}\right)
\end{array}
$$

Definition

A contains B : We can delete rows and columns in A, and replace numbers with smaller numbers to end up with B.

Containment and Avoidance for $0,1 \ldots k$-Matrices

$$
\begin{array}{cc}
\mathrm{A} & \mathrm{~B} \\
\left(\begin{array}{lll}
2 & 0 & 1 \\
3 & 1 & 1 \\
0 & 0 & 2
\end{array}\right) & \left(\begin{array}{cc}
2 & 1 \\
0 & 2
\end{array}\right)
\end{array}
$$

Definition

A contains B : We can delete rows and columns in A, and replace numbers with smaller numbers to end up with B.

Definition

A avoids B : A does not contain B.

Extremal Function $0,1 \ldots k$-matrices

Definition

$\mathrm{ex}_{k}(P, n)$: The maximum sum of numbers an $n \times n 0,1 \ldots k$-matrix A can have and still avoid P, where P is a $0,1 \ldots k$-matrix.

Example

$$
P=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

$\mathrm{ex}_{2}(P, 3)=14$, because any 3×3 matrix with all entries $0,1,2$ and sum over 14 contains P.

Mapping 0, 1...k-matrices to 0,1-matrices

Definition

P_{j} : The 0,1 -matrix formed by mapping all entries with values $\geq j$ to 1 and entries $\leq j-1$ to 0 .

Example

$$
\begin{gathered}
P \\
\left(\begin{array}{lll}
2 & 0 & 1 \\
3 & 1 & 1 \\
0 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

$0, j$-matrices

Lemma

Let P be a matrix with only $0, j$ entries. For any $k \geq j$, $e x_{k}(P, n)=(j-1) n^{2}+(k-j+1) e x\left(P_{j}, n\right)$.

$0, j$-matrices

Lemma

Let P be a matrix with only $0, j$ entries. For any $k \geq j$, $e x_{k}(P, n)=(j-1) n^{2}+(k-j+1) e x\left(P_{j}, n\right)$.

Reasoning.

The 'optimal' matrix that avoids P has $j-1$ entries where an 'optimal' matrix that avoids P_{j} has 0's, and k entries where it has 1's. For example, an 'optimal' matrix that avoids some pattern P might look like:

$$
\left(\begin{array}{ccc}
j-1 & k & k \\
k & k & j-1 \\
k & j-1 & j-1
\end{array}\right)
$$

Calculating, this has $(j-1) n^{2}+(k-j+1) \operatorname{ex}\left(P_{j}, n\right)$ sum.

Simple Inequality

Theorem

$(j-1) n^{2}+(k-j+1) e x\left(P_{j}, n\right) \leq \operatorname{ex}_{k}(P, n) \leq$ $(j-1) n^{2}+(k-j+1) e x\left(P_{1}, n\right)$
where j is the maximum element in P.

Simple Inequality

Theorem

$(j-1) n^{2}+(k-j+1) e x\left(P_{j}, n\right) \leq e x_{k}(P, n) \leq$
$(j-1) n^{2}+(k-j+1) \operatorname{ex}\left(P_{1}, n\right)$
where j is the maximum element in P.

Proof of LHS.

We find a matrix contained by P that has extremal function $(j-1) n^{2}+(k-j+1) \operatorname{ex}\left(P_{j}, n\right)$.

Let P^{\prime} be the P with all non- j entries replaced with 0 's.

$$
\left(\begin{array}{ccc}
j & 0 & 1 \\
j & j-1 & 1 \\
0 & 0 & j
\end{array}\right) \rightarrow\left(\begin{array}{lll}
j & 0 & 0 \\
j & 0 & 0 \\
0 & 0 & j
\end{array}\right)
$$

Simple Inequality

Theorem

$(j-1) n^{2}+(k-j+1) e x\left(P_{j}, n\right) \leq e x_{k}(P, n) \leq$
$(j-1) n^{2}+(k-j+1) \operatorname{ex}\left(P_{1}, n\right)$
where j is the maximum element in P.

Proof of RHS.

We find a matrix that contains P that has extremal function $(j-1) n^{2}+(k-j+1) \operatorname{ex}\left(P_{1}, n\right)$.

Let P^{\prime} be the P with all non-0 entries replaced with 1's.

$$
\left(\begin{array}{ccc}
j & 0 & 1 \\
j & j-1 & 1 \\
0 & 0 & j
\end{array}\right) \rightarrow\left(\begin{array}{lll}
j & 0 & j \\
j & j & j \\
0 & 0 & j
\end{array}\right)
$$

Some 0,1,2-matrices

$$
n^{2}+\operatorname{ex}\left(P_{2}, n\right) \leq \operatorname{ex}_{2}(P, n) \leq n^{2}+\operatorname{ex}\left(P_{1}, n\right)
$$

Some 0,1,2-matrices

$$
n^{2}+\operatorname{ex}\left(P_{2}, n\right) \leq \operatorname{ex}_{2}(P, n) \leq n^{2}+\operatorname{ex}\left(P_{1}, n\right)
$$

Example

$$
\text { Let } P=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

$\mathrm{ex}_{2}(P, n)=n^{2}+2 n-1 \leftarrow$ analogous to lower bound

Some 0,1,2-matrices

$$
n^{2}+\operatorname{ex}\left(P_{2}, n\right) \leq \operatorname{ex}_{2}(P, n) \leq n^{2}+\operatorname{ex}\left(P_{1}, n\right)
$$

Example

$$
\text { Let } P=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

$\mathrm{ex}_{2}(P, n)=n^{2}+2 n-1 \leftarrow$ analogous to lower bound

Example

$$
\text { Let } P=\left(\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right)
$$

$\mathrm{ex}_{2}(P, n) \geq n^{2}+3 n-2 \leftarrow$ NOT analogous to lower bound
We generally believe that the lower bound is closer than the upper bound though.

A general form

Theorem

$$
\text { Let } P=\left(\begin{array}{cccccc}
2 & 2 & 2 & . & . & . \\
1 & 1 & 1 & & & \\
1 & 1 & 1 & & & \\
\cdot & & & . & & \\
\cdot & & & & \cdot & \\
\cdot & & & & & .
\end{array}\right)
$$

$e x_{2}(P, n)=n^{2}+O(n)$.

A general form

Theorem

$$
\text { Let } P=\left(\begin{array}{cccccc}
2 & 2 & 2 & . & . & . \\
1 & 1 & 1 & & & \\
1 & 1 & 1 & & & \\
\cdot & & & . & & \\
\cdot & & & & \cdot & \\
\cdot & & & & & .
\end{array}\right)
$$

$e x_{2}(P, n)=n^{2}+O(n)$.
Again serves as evidence that lower bound is better:

$$
\begin{gathered}
n^{2}+\operatorname{ex}\left(P_{2}, n\right) \leq \operatorname{ex}_{2}(P, n) \leq n^{2}+\operatorname{ex}\left(P_{1}, n\right) \\
n^{2}+O(n) \leq \operatorname{ex}(P, n) \leq n^{2}+O\left(n^{2-\epsilon}\right)
\end{gathered}
$$

Improving the Simple Inequality

Theorem

Let P be a $0,1,2$-matrix. The sum of numbers in a $n \times n$ matrix avoiding P is at most $\leq n^{2}+O\left(k \operatorname{ex}\left(P_{2}, \frac{n}{\sqrt{k}}\right)\right)$, where k is the number of 0 's in the $n \times n$ matrix.
Can be modified to $n^{2}+O\left(\sqrt{k} e x\left(P_{2}, n\right)\right)$, easier to use but a bit weaker.

Improving the Simple Inequality

Proof Sketch.

Consider an $n \times n 0,1,2$-matrix that avoids P. Build 'boxes' around the 0 's as such:

We can limit the number and side length of the boxes to get the desired result.

Implications

Theorem

Let P be a $0,1,2$-matrix. The sum of numbers in a $n \times n$ matrix avoiding P is at most $\leq n^{2}+O\left(k \operatorname{ex}\left(P_{2}, \frac{n}{\sqrt{k}}\right)\right)$, where k is the number of 0 's in the $n \times n$ matrix.
Can be modified to $n^{2}+O\left(\sqrt{k} e x\left(P_{2}, n\right)\right)$, easier to use but a bit weaker.

- Bounds $\mathrm{ex}_{2}(P, n)$ in terms of number of 0 's in the $n \times n$ matrix that must avoid $P: \operatorname{ex}_{2}(P, n) \leq n^{2} O\left(\sqrt{k} \operatorname{ex}\left(P_{2}, n\right)\right)$
- When k is (nontrvially) small, $O\left(\sqrt{k} \operatorname{ex}\left(P_{2}, n\right)\right)$ is better than ex $\left(P_{1}, n\right)$
- When k is large, it is not good enough.
- To make the result useful, we need to find another way to deal with the lots of k 's case.

Further Research

Overarching Goal

Characterize all the extremal functions ex (P, n) in terms of 0,1 extremal functions ex (P, n).

Further Research

Overarching Goal

Characterize all the extremal functions ex $x_{k}(P, n)$ in terms of 0,1 extremal functions ex (P, n).

- For 0,1,2-matrices, find $\mathrm{ex}_{2}(P, n)-n^{2}$ upto a constant. We believe it is $\theta\left(\operatorname{ex}\left(\left(P_{2}, n\right)\right)\right.$ rather than $\theta\left(P_{1}, n\right)$

Further Research

Overarching Goal

Characterize all the extremal functions ex (P, n) in terms of 0,1 extremal functions ex (P, n).

- For 0,1,2-matrices, find $\mathrm{ex}_{2}(P, n)-n^{2}$ upto a constant. We believe it is $\theta\left(\operatorname{ex}\left(\left(P_{2}, n\right)\right)\right.$ rather than $\theta\left(P_{1}, n\right)$
- Find the exact value of $\operatorname{ex}_{2}(P, n)$ where

$$
\text { Let } P=\left(\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right)
$$

Further Research

Overarching Goal

Characterize all the extremal functions ex (P, n) in terms of 0,1 extremal functions ex (P, n).

- Generalize the theorem about a row of 2's followed by rows of 1 's to $0,1 \ldots k$-matrices, where we consider a row of i 's followed by rows of j 's where $i>j$.

Further Research

Overarching Goal

Characterize all the extremal functions $e x_{k}(P, n)$ in terms of 0,1 extremal functions ex (P, n).

- Generalize the theorem about a row of 2's followed by rows of 1 's to $0,1 \ldots k$-matrices, where we consider a row of i 's followed by rows of j 's where $i>j$.
- Generalize the last theorem (improvement on upper bound from simple inequality) to $0,1 \ldots k$-matrices.

Acknowledgements

would like to thank:

- My mentor Jesse Geneson
- The PRIMES Program
- My family

