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Definition

0, 1...k-matrix: A matrix where all the entries are in {0, 1...k}.

Example  1 0 1
1 0 1
0 0 1


is a 0, 1-matrix. It is also a 0, 1...k-matrix for all k > 1
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A B 1 0 1
1 0 1
0 0 1

 (
1 1
1 0

)

Definition

A contains B: We can delete rows and columns in A, and replace
1’s with 0’s to end up with B.
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A B 1 0 1
1 0 1
0 0 1

 →
(

1 1
1 1

)
→

(
1 1
1 0

)
Delete Replace

Therefore, A contains B.

Definition

A avoids B: A does not contain B.
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Definition

ex(P, n): If P is a 0, 1-matrix, then this is the maximum number
of 1’s we can have in an n× n matrix that avoids P .

Example

P =

(
1 1
1 1

)
ex(P, 3) = 6, because any 3× 3 matrix with over 6 ones contains
P .
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Theorem

Let P =


1 1 1 . .
0 0 0
0 0 0
. .
. .



where P has r rows and c columns.
Then, ex(P, n) = n(r+ c)− (r− 1)(c− 1) Important: this is O(n)

Meghal Gupta Mentor: Jesse Geneson redExtremal Functions of Forbidden Matrices



red red red red red red red red red red red red red red red red red red red redContainment and Avoidance for 0, 1...k-Matrices

A B 2 0 1
3 1 1
0 0 2

 (
2 1
0 2

)

Definition

A contains B: We can delete rows and columns in A, and replace
numbers with smaller numbers to end up with B.

Definition

A avoids B: A does not contain B.
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A B 2 0 1
3 1 1
0 0 2

 (
2 1
0 2

)

Definition

A contains B: We can delete rows and columns in A, and replace
numbers with smaller numbers to end up with B.

Definition

A avoids B: A does not contain B.
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Definition

exk(P, n): The maximum sum of numbers an n× n 0, 1...k-matrix
A can have and still avoid P , where P is a 0, 1...k-matrix.

Example

P =

(
2 1
1 1

)
ex2(P, 3) = 14, because any 3× 3 matrix with all entries 0, 1, 2
and sum over 14 contains P .
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Definition

Pj : The 0, 1-matrix formed by mapping all entries with values ≥ j
to 1 and entries ≤ j − 1 to 0.

Example

P P2 2 0 1
3 1 1
0 0 2

 →

 1 0 0
1 0 0
0 0 1
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Lemma

Let P be a matrix with only 0, j entries. For any k ≥ j,
exk(P, n) = (j − 1)n2 + (k − j + 1)ex(Pj , n).

Reasoning.

The ’optimal’ matrix that avoids P has j − 1 entries where an
’optimal’ matrix that avoids Pj has 0’s, and k entries where it has
1’s. For example, an ’optimal’ matrix that avoids some pattern P
might look like:  j − 1 k k

k k j − 1
k j − 1 j − 1


Calculating, this has (j − 1)n2 + (k − j + 1)ex(Pj , n) sum.
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Theorem

(j − 1)n2 + (k − j + 1)ex(Pj , n) ≤ exk(P, n) ≤
(j − 1)n2 + (k − j + 1)ex(P1, n)
where j is the maximum element in P .

Proof of LHS.

We find a matrix contained by P that has extremal function
(j − 1)n2 + (k − j + 1)ex(Pj , n).

Let P ′ be the P with all non-j entries replaced with 0’s. j 0 1
j j − 1 1
0 0 j

 →

 j 0 0
j 0 0
0 0 j
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Theorem

(j − 1)n2 + (k − j + 1)ex(Pj , n) ≤ exk(P, n) ≤
(j − 1)n2 + (k − j + 1)ex(P1, n)
where j is the maximum element in P .

Proof of RHS.

We find a matrix that contains P that has extremal function
(j − 1)n2 + (k − j + 1)ex(P1, n).

Let P ′ be the P with all non-0 entries replaced with 1’s. j 0 1
j j − 1 1
0 0 j

 →

 j 0 j
j j j
0 0 j



Note: in our inequality, the part that ’matters’ is the part
excluding (j − 1)n2, or exk(P, n)− (j − 1)n2. This is also o(n2)
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n2 + ex(P2, n) ≤ ex2(P, n) ≤ n2 + ex(P1, n)

Example

Let P =

(
2 1
1 1

)
ex2(P, n) = n2 + 2n− 1 ← analogous to lower bound

Example

Let P =

(
2 2
2 1

)
ex2(P, n) ≥ n2 + 3n− 2 ← NOT analogous to lower bound

We generally believe that the lower bound is closer than the upper
bound though.
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Theorem

Let P =



2 2 2 . . .
1 1 1
1 1 1
. .
. .
. .



ex2(P, n) = n2 +O(n).

Again serves as evidence that lower bound is better:

n2 + ex(P2, n) ≤ ex2(P, n) ≤ n2 + ex(P1, n)
n2 +O(n) ≤ ex(P, n) ≤ n2 +O(n2−ε)
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Theorem

Let P be a 0, 1, 2-matrix. The sum of numbers in a n× n matrix
avoiding P is at most ≤ n2 +O(kex(P2,

n√
k
)), where k is the

number of 0’s in the n× n matrix.
Can be modified to n2 +O(

√
kex(P2, n)), easier to use but a bit

weaker.
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Proof Sketch.

Consider an n× n 0, 1, 2-matrix that avoids P . Build ’boxes’
around the 0’s as such:

We can limit the number and side length of the boxes to get the
desired result.
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Theorem

Let P be a 0, 1, 2-matrix. The sum of numbers in a n× n matrix
avoiding P is at most ≤ n2 +O(kex(P2,

n√
k
)), where k is the

number of 0’s in the n× n matrix.
Can be modified to n2 +O(

√
kex(P2, n)), easier to use but a bit

weaker.

Bounds ex2(P, n) in terms of number of 0’s in the n× n
matrix that must avoid P : ex2(P, n) ≤ n2O(

√
kex(P2, n))

When k is (nontrvially) small, O(
√
kex(P2, n)) is better than

ex(P1, n)

When k is large, it is not good enough.

To make the result useful, we need to find another way to
deal with the lots of k’s case.
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Overarching Goal

Characterize all the extremal functions exk(P, n) in terms of 0,1
extremal functions ex(P, n).

For 0,1,2-matrices, find ex2(P, n)− n2 upto a constant. We
believe it is θ(ex((P2, n)) rather than θ(P1, n)

Find the exact value of ex2(P, n) where

Let P =

(
2 2
2 1

)
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Overarching Goal

Characterize all the extremal functions exk(P, n) in terms of 0,1
extremal functions ex(P, n).

Generalize the theorem about a row of 2’s followed by rows of
1’s to 0, 1...k-matrices, where we consider a row of i’s
followed by rows of j’s where i > j.

Generalize the last theorem (improvement on upper bound
from simple inequality) to 0, 1...k-matrices.
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